Automated Detection and Quantification of Prostate Cancer in Needle Biopsies by Digital Image Analysis

نویسندگان

  • Vamsi Parimi
  • Laurie J. Eisengart
  • Ximing J. Yang
چکیده

Introduction: Triple immunohistochemical (IHC) stains including antibodies specific for alphamethylacyl-CoA-racemase and basal cell markers have been a valuable aid in accurate identification of prostate carcinoma. However, accurate quantification of minuscule areas of prostate carcinoma in biopsy specimens can often be a challenge. Here we assessed the diagnostic value and quantitative use of automated digital image analysis on triple IHC stained prostate needle biopsies. Methods: Twelve cases of prostate needle biopsy material including 75 needle cores were stained with triple-antibody cocktail (P504S + 34βE12 + p63). Slides were digitally scanned with the APERIO digital image analyzer and evaluated with the GENIE pattern and color recognition digital image analysis that we developed. A slide with known areas of adenocarcinoma, high grade prostatic intraepithelial neoplasia (PIN), benign glands and stroma was used as a training set for the automated digital image analysis platform. Results: Among 75 needle biopsy cores, 19 (25.33%) contained adenocarcinoma by histology. Digital image analysis recognized adenocarcinoma in 95% of these needle biopsies. The average area of the needle biopsy was 7.63 mm2 and overall the average area of tumor was 0.196 mm2. The smallest area of tumor recognized by the program was 0.0022 mm2 (0.0363% of the core) and the largest was 0.62 mm2 (8.17% of the core) among needle core biopsies. False positives resulted from areas of high grade PIN with patchy basal cells. The false negative was caused by uneven AMACR staining in one area of adenocarcinoma. Digital recognition of areas of interest was improved by three successive image analysis training which increased the sensitivity and specificity from 83% and 89% to 90% and 93%, respectively. Conclusions: Digital image analysis in concert with IHC triple staining may be useful for accurate detection and quantitative analysis of small foci of prostatic adenocarcinoma. Defining methods to increase the sensitivity and specificity of quantitative automated digital image analysis will likely evolve as an area of investigation. Future automated digital scanning and innovative pattern and Corresponding author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-1: Screening of Subfertile Men for Testicularlar Carcinoma In Situ by An Automated Image Analysis-Based Cytological Test of The Ejaculate

Background: Testicular cancer (TC) is usually diagnosed after manifestation of an overt tumour. Tumour formation is preceded by a pre-invasive and asymptomatic stage, carcinoma in situ (CIS) testis, except for very rare subtypes. The CIS cells are located within seminiferous tubules but can be exfoliated and detected in ejaculates with specific CIS markers. Materials and Methods: We have built ...

متن کامل

مارکر P504S در تشخیص پرولیفراسیون غددی آتیپیک پروستات

Background: Transrectal ultrasonography guided needle biopsy of prostate frequently used for early detection of cancer has faced the pathologists with a major diagnostic challenge. In recent years P504S has been used as a tumor cell marker for definitive diagnosis of prostatic cancer in small biopsy specimens.Methods: 70 prostate needle biopsies and 6 transurethral resections (TURP) containing ...

متن کامل

Automated Analysis of PIN-4 Stained Prostate Needle Biopsies

Prostate Needle biopsies are stained with the PIN-4 marker cocktail to help the pathologist distinguish between HGPIN and adenocarcinoma. The correct interpretation of multiple IHC markers can be challenging. Therefore we propose the use of computer aided diagnosis algorithms for the identification and classification of glands in a whole slide image of prostate needle biopsy. The paper presents...

متن کامل

Novel Automated Method for Minirhizotron Image Analysis: Root Detection using Curvelet Transform

In this article a new method is introduced for distinguishing roots and background based on their digital curvelet transform in minirhizotron images. In the proposed method, the nonlinear mapping is applied on sub-band curvelet components followed by boundary detection using energy optimization concept. The curvelet transform has the excellent capability in detecting roots with different orient...

متن کامل

Automatic Detection and Localization of Surface Cracks in Continuously Cast Hot Steel Slabs Using Digital Image Analysis Techniques

Quality inspection is an indispensable part of modern industrial manufacturing. Steel as a major industry requires constant surveillance and supervision through its various stages of production. Continuous casting is a critical step in the steel manufacturing process in which molten steel is solidified into a semi-finished product called slab. Once the slab is released from the casting unit, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014